因此如何合理的设置铁芯以及如何合理的设计铁芯结构成为提高真空灭弧室可靠性的关键。针对杯状纵磁真空灭弧室触头,本文设计了两种不同结构的铁芯,一种是结构为环状的铁芯,为了减小涡流的影响,在环形铁芯上开一个间隙为1 mm 的断口;另一种结构为圆周方向布置的柱状铁芯,柱状铁芯相互不接触,因此可以更好的减小涡流的影响。采用有限元分析方法对比分析了两种不同结构铁
芯对纵向磁场和剩余磁场以及磁场滞后时间的影响。 触头结构模型 文中仿真所采用的两种不同铁芯结构的触头模型如图1 所示,触头杯均有4 个杯指,为了防止触头片上产生涡流,对应的在触头片上开有四个周向均匀布置的径向直槽。触头外径尺寸为78 mm,壁厚11 mm,弧柱直径与触头外径尺寸相同,柱状铁芯12 个,仿真模型中触头开距为10 mm,杯座材料为无氧铜,支撑盘材料为不锈钢,触头片材触头在高真空中分离时,其电弧表现形式与外观特性都与在空气中的情形有较大区别。真空断路器的击穿机理目前主要有场致发射、粒撞击和粒子交换
三种假说,在短间隙真空断路器的相关研究中,通常由场致发射效应占主导。在触头断开时刻,整个阴极表面会产生金属蒸气。理论上是由于触头分开瞬间,电流集中在触头表面某点上,导致金属桥熔化且部分金属原子发生电离。随着触头开距的增大,场致发射与间隙击穿增强,触头表面金属凸点不断溶化并向触头间隙补充金属粒子。此时阴极斑点会在阴极表面形成,并有更多的高能等离子体形成并扩散至间隙内。电弧引燃后,充满等离子体的电极间
隙变成良好导体,同时阳极开始向电弧提供粒子。在纵向磁场作用下,电弧等离子体由触头中心向周围扩散,此过程会维持一段时间。对于交流真空断路器而言,电流到达峰值后会逐渐减小,两触头向等离子体提供的粒子同样减少,此时电极间隙内主要为弧后残存粒子,伴随着触头完全断开,残存粒子逐渐扩散至消失,断路器完成开断。 真空电弧等离子体的产生过程,可以表现为触头开距增大、触头表面金属蒸发,伴随场致发射效应和金
属电离,由于两极电子、金属离子的不断补充,终形成电弧。在电弧等离子体的研究方面,王景、武建文等运用连续光谱法分析了电子温度和电子密度,并讨论了中频情况下,电弧过渡及扩散两种形态。胡上茂、姚学玲等利用RC 阻容式电荷收集器,对初始等离子体的触发特性进行了研究。舒胜文、黄道春等通过对真空断路器开断过程的再研究,提出数值方针结合实验的方法,给出开断过程不同阶段所需的数值仿真方法及关注点。赵子玉等通过C
CD 摄像技术,分析了真空电弧的重燃及抑制措施
真空断路器的真空度太低的话,这会对真空断路器的切断能力有一定的影响,还会引起真空断路器的使用寿命不长,如果是遇到那种比较严重的故障的话,这
个很多可能会出现的事故,所以一定要及时的处理这些问题,真空断路器一定要定期检查以及维修,一定要进行定性的测试,一定要保证真空度不会下降,还要做好行程以及跳的测试,当然预防的措施也是少不了的,选择质量好的真空断路器产品注意放电情况,停电维修要进行各项测试保持很好工作的状态。真空断路器的实时监测也是非常的重要,使用电磁波的办法完全是可以达到对真空断路器的监测作用,其次的就是达到工程的标准以及验证,这种
在线监测的装置必须要在整体结构不变的情况下,还有运行工作也是不变的情况下可以进行实时测试工作,真空断路器的灭弧能力很好, 然而,在某些电网条件下,真空断路器关断时产生
的瞬态过电压会对电网中的变压器产生致命影响,导致其使用寿命降低,生产效率下降,甚至可能造成严重的安全事故。真空断路器的瞬态过电压已有大量文献对此进行分析与研究,不过大部分是针对电弧炉等生产设备进行的。由于光伏发电系统内通常利用LC 滤波模块对输出电压进行整流,而此模块也多用于抑制电路内的瞬态响应,因此LC 滤波模块对于控制真空断路器的瞬态过电压是否有着积极影响对于研究光伏系统内的断路器瞬态响应有着
重要意义。本文旨在研究真空断路器的瞬态响应在光伏发电系统中造成的影响,以12kV/1250A 规格的真空断路器为例进行测试,并重点关注光伏器件中的LC 滤波机构在抑制瞬态响应中的作用。
断路器直流电阻增大的关键因素则是触头电磨损和断路器触头开距的变化。 5、断路器合闸跳时间增大 一般情况下,真空断路器合闸时常常会出现触头跳的情况,然而如果说跳的范围超出了规定的话就会造成触头烧伤或者熔焊。簧性能下降、拐臂和轴磨损往往会导致真空断路器合闸跳时间的增长。 6、断路器中间箱ct表面对支架放电 要断路器对支架放电是由于电流互感器(ct)表面产生的不
均匀电场。真空断路器中间箱装有电流互感器,当电流互感器不采取措施,在断路器运转时ct表面就会产生不平衡的电场。因此要尽可能的阻止这样的情况的出现就要在互感器出厂之前在其表面涂上一层半导体胶,这样就可以保证电场平衡均匀。在装配断路器时若半导体胶要是受影响出现剥落的话依然会使得断路器工作过程之中互感器表面出现不均匀电场,由此造成互感器表面对支架放电。 7、断路器灭弧室不能断开 一般
状况下,造成断路器电路断开,电流切断的主要原因是手动分闸操作以及保护动作跳闸。真空断路器的灭弧原理区别于别的类型的断路器,因为该断路器一般是将真空作为绝缘及灭弧介质。 真空泡的真空度要是无法满足要求的话常常会促成真空泡内出现电离,这必然会导致电离子出现,电离子无疑将减弱灭弧室内绝缘作用,因为这些因素断路器灭弧室就会一直处在连接状态。 8、断路器真空泡真空度降低 真空泡
的材质要是出现了故障常常说明真空泡本身也出现的细小的漏点。真空泡内波形管的材质或制作装配工艺出现故障的时候,由于真空灭弧室使用时期不断的加长和开断的次数增加真空度就会慢慢的减少,当真空度下降到无法维持规定的度数的时候就会使得它自身的开断能力减弱和耐压水平降低。
1、光伏发电系统结构 本文在研究时采用的光伏发电系统等效框图如图1 所示。其中太阳能电池板用于将太阳辐射的能量转化为直流电势,其具体参数及非线性特性等由生产商提供。直流电势须经由DC/DC升压模块以
及DC/AC 逆变器转换为合适的交流电力输送给电气网络。图中的LC 滤波器主要作用是用于限制逆变器得到的交流电中的谐波失真等非线性干扰。 真空断路器利用真空作为灭弧介质以及灭弧后触头间的绝缘介质,得益于其高真空环境,触头间的介电常数是标准大气压下的十倍以上,因此其电流截断能力也远强于普通断路器。然而正因其较强的电流截断能力,真空断路器在操作时易产生较高的过电压,当电路中存在电机、变压器、
电抗器等高电感元件时,容易在这些元件两端形成瞬态高压,损坏电路。随着城市化进程的加速,大型生活小区的形成以及工业生产的集团化和规模化,为提高供电质量,减少线路损耗,需要高压送电直接进入市区的负荷中心,因而要求大量使用占地面积小、安全可靠的高压开关———真空开关。 真空开关是一种以气体分子极为稀少,绝缘强度很高的真空空间为熄弧介质的新型开关。其触头是在密封的真空灭弧室内分、合电路的,切断电
流时,仅有金属蒸汽离子形成的电弧,而无气体的碰撞游离,因金属蒸汽离子的扩散及再复合过程非常迅速,从而能快速灭弧和恢复原来的真空度,可承受多次分、合闸而不降低开断能力,并且不产生高压气体及有毒气体。因此具有:①体积小,重量轻;②动作快,开断容量大;③适合频繁操作;④无火灾及危险,不污染环境;⑤寿命长,维修工作量少等优点。 真空开关的工艺水平适合我国企业的制造现状,相对较低,非常适合我国
的国情,因此得到了普遍的应用。据统计,我国目前在10kV 级断路器中,真空开关占到80%以上。在35kV 级,近几年也占到40%以上。但是,由于真空开关依赖真空实现快速灭弧开断,在检测中也较多出现真空灭弧室漏气、机械特性失调、温升过高等不合格现象,因此在应用真空开关时必须处理好这几个关键问题。1、真空室漏气 真空灭弧室是真空开关的核心部件, 它是采用玻璃或陶瓷作支撑及密封,内部有
动、静触头和屏蔽罩,室内有负压,