“就技术方面来说,中国中压开关正在进入模块化、智能化的新时期。随着新型工业化、城镇化的推进,中国的输配电行业格局也正在发生变化,用户的需求也更加多样化。施耐德电气凭借完备的中压产品线、领先的本土研发能力、灵活的业务模式及专业的服务团队,为用户提供最灵活、 化、最有效的中压解决方案。”徐红艳说。 市场集中度不断提升 中压开关设备很大一部分是用在电网公司的变电站中,因此电网公司对设备企业的要求起着决定性作用。近年来,由于竞争的日趋激烈,中压开关行业内也出现不同程度低价中标的混乱竞争格局,一些企业用低价、偷工减料的方式来降低成本,给电网运行带来安全隐患。 “中压开关行业的制造企业很多,最开始的时候大概只有几家外资品牌,市场空间相对集中,但当中国企业开始蓬勃发展的时候,就会出现一个市场分散的过程,成百上千的供应商经历大浪淘沙,最终只有20余家企业能够在市场上站稳脚跟。”徐红艳告诉记者,如果一个生产企业它的产量很小而生产成本、管理成本等很大,随着竞争的加剧,下降,利润下滑,那么这些企业的生存压力就会非常大。 实际上,电网公司采用集中采购招标方式,提高准入门槛,对企业来说也是一种改变。一是让企业不再把精力放在追求 价之上;二是倒逼企业把技术、质量搞上去,提高综合实力; 三是将一些不具资质的企业排除在外,减少整个电网的安全隐患对其他行业用电设备的招标方式带来示范效应。 “如果单纯地从产品技术角度来看,目前中压开关的技术已经十分成熟。但随着工业化效率的提升,现在产品的架构必将在较短的时间内发生根本性变化。其一是结构应该更为简单,其二是发展适合市场的创新型产品。”西安高压开关研究院院长郑军表示,由于国内竞争更为加剧,特别是许多大用户采取集中招标之后,市场企业由原
对采集数据进行形态学操作,得到内部高能等离子体及电弧外部轮廓的时间-
面积变化曲线。从引弧、稳定燃弧、熄弧及弧后介质恢复四个角度,对不同阶段的电弧面积变化做出定量分析,并探究电弧熄弧阶段电弧内外面积差变化。实验表明,通过分析不同阶段的等离子体形态变化,能够找到电弧平稳燃弧及弧后介质恢复的关键点,为高压等级真空断路器研发设计及后期电弧形态诊断提供进一步参考。 随着我国电力系统的不断发展,真空断路器的生产数量逐渐超过中压SF6开关。由于其体积小、开断寿命长和电
流容量大等优点,真空断路器的应用范围越来越多向高压、超高压扩展。真空电弧是断路器触头断开时,依靠蒸发金属蒸气并电离来维持的低温等离子体,其形成、发展和后熄灭对开断电路有着重要影响。研究真空电弧等离子体的形态特征,对断路器电场、磁场设计有很好的指导作用。 通过对高速摄像机采集到一组真空电弧分析,t= 0.2~6.8 ms 为引弧和稳定燃弧阶段,此阶段电弧形态主要为阴极斑点形成和电弧等离子体充满真个触头间隙,因此时两极不断向间隙补充电子及高能粒子,故此时虽电弧整体轮廓不断增大,但扩散现象并不明显。为更加清晰地展示内外电弧几何形态区别,本文主要对熄灭阶段及弧后介质恢复阶段的电弧形态做出
后期处理,对稳定燃弧阶段的内部高能等离子体形态未做出细节分析。t=6.9ms 开始为真空熄弧阶段,内外面积差开始激增,内部高能等离子体面积逐渐减小,电弧外部轮廓在纵向磁场作用下维持扩散状态,其电弧原始图像与内部高能等离子体分布二值图像如图6。图中可看出内部高能电弧即将从两极分断开来,外部电弧轮廓基本维持在稳定扩散状态。 t = 7.5 ms 以后熄弧阶段开始向弧后介质恢复阶段过渡,内部等
离子面积分布迅速减小,外部电弧轮廓也出现缩小现象,
电的产生、输送、使用中,配电是一个极其重要的环节。配电系统包括变压器和各种高低压电器设备,低压高压真空断路器则是一种使用量大面广的电器。高压真空断路器是起保护作用的,能熄灭电弧,有分段能力。接触器是利用线圈来控制电路的通么是负荷开关?是具有简单的灭弧装置,可以带负荷分,合电路的控制电器。能通断一定的负荷电流和过负荷电流,但不能断开短路电流,必须与高压熔断器串联使用,借助熔断器来切除短路电流。负荷开关的作用:(1)开断和关合作用。由于它有一定的灭弧能力,因此可用来开断和关合负荷电流和小干一定倍数(通常为3-4倍)的过载电流;也可以用来开断和关合比隔离开关允许容量更大的空载变压器,更长的空载线路,有时也用来开断和关合大容量的电容器组。(2)替代作用。负荷开关与限流熔断器串联组合可以代替断路器使用。即由负荷开关承担开断和关合小于一定倍数的过载电流,而由限流熔断器承担开断较大的过载电流和短路电流。(3)负荷开关与限流熔断器串联组合成一体的负荷开关,在标准中规定称为“负荷开关-熔断器组合电器”。熔断器可以装在负荷开关的电源侧,也可以装在负荷开关的受电侧。当不需要经常掉换熔断器时,宜采用前一种布置,以便利用负荷开关兼作隔离开关的功能,用它来隔离加在限流熔断器上的电压。什么是隔离开关?是一种没灭弧装置的控制电器,其主要功能是隔离电源,以保证其它电气设备的安全检修,因此配套完善,产品型号多样,随着公司的不断发展,产品设计科学、制作精良、造型美观,是现代电网建设的理想的配套产品,其中户内(外)真空断路器,隔离开关,负荷开关,氧化锌避雷器,熔断器,穿墙套管,绝缘子,电流互感器,高压电力计量箱等一系列高低压电气产品畅销全国各地我们以“科技兴业,质量创牌,诚经营,优良服务”的企业宗旨;一直致力于追求卓越的民族电气工业,为广大新老用户提供优质的产品和良好的服务而不懈努力,您的满意始终是我们追求的目标,真诚欢迎新老朋友惠顾,共创美好未来。不允许带负荷操作。但在一定条件下,允许接通或断开小功率电路。是高压开关当中使用的最多也是最频繁的一个电器装置隔离开关的作用:1、分闸后,建立可靠的绝缘间隙,将需要检修的设备或线路与电源用一个明显断开点隔开,以保证检修人员和设备的安全。2、根据运行需要,换接线路。3、可用来分、合线路中的小电流,如套管、母线、连接头、短电缆的充电电流,开关均压电容的电容电流,双母线换接时的环流以及电压互感器的励磁电流等。4、根据不同结构类型的具体情况,可用来分、合一定容量变压器的空载励磁电流。高压隔离开关按其安装方式的不同,可分为户外高压隔离开关与户内高压隔离开关。户外高压隔离开关指能承受风、雨、雪、污秽、凝露、冰及浓霜等作用,适于安装在露台使用的高压隔离开关。按其绝缘支柱结构的不同可分为单柱式隔离开关、双柱式隔离开关、三柱式隔离开关。其中单柱式隔离开关在架空母线下面直接将垂直空间用作断口的电气绝缘,因此,具有的明显优点,就是节约占地面积,减少引接导线,同时分合闸状态特别清晰。在超高压输电情况下,变电所采用单柱式隔离开关后,节约占地面积的效果更为显著。
因此如何合理的设置铁芯以及如何合理的设计铁芯结构成为提高真空灭弧室可靠性的关键。针对杯状纵磁真空灭弧室触头,本文设计了两种不同结构的铁芯,一种是结构为环状的铁芯,为了减小涡流的影响,在环形铁芯上开一个间隙为1 mm 的断口;另一种结构为圆周方向布置的柱状铁芯,柱状铁芯相互不接触,因此可以更好的减小涡流的影响。采用有限元分析方法对比分析了两种不同结构铁
芯对纵向磁场和剩余磁场以及磁场滞后时间的影响。 触头结构模型 文中仿真所采用的两种不同铁芯结构的触头模型如图1 所示,触头杯均有4 个杯指,为了防止触头片上产生涡流,对应的在触头片上开有四个周向均匀布置的径向直槽。触头外径尺寸为78 mm,壁厚11 mm,弧柱直径与触头外径尺寸相同,柱状铁芯12 个,仿真模型中触头开距为10 mm,杯座材料为无氧铜,支撑盘材料为不锈钢,触头片材触头在高真空中分离时,其电弧表现形式与外观特性都与在空气中的情形有较大区别。真空断路器的击穿机理目前主要有场致发射、粒撞击和粒子交换
三种假说,在短间隙真空断路器的相关研究中,通常由场致发射效应占主导。在触头断开时刻,整个阴极表面会产生金属蒸气。理论上是由于触头分开瞬间,电流集中在触头表面某点上,导致金属桥熔化且部分金属原子发生电离。随着触头开距的增大,场致发射与间隙击穿增强,触头表面金属凸点不断溶化并向触头间隙补充金属粒子。此时阴极斑点会在阴极表面形成,并有更多的高能等离子体形成并扩散至间隙内。电弧引燃后,充满等离子体的电极间
隙变成良好导体,同时阳极开始向电弧提供粒子。在纵向磁场作用下,电弧等离子体由触头中心向周围扩散,此过程会维持一段时间。对于交流真空断路器而言,电流到达峰值后会逐渐减小,两触头向等离子体提供的粒子同样减少,此时电极间隙内主要为弧后残存粒子,伴随着触头完全断开,残存粒子逐渐扩散至消失,断路器完成开断。 真空电弧等离子体的产生过程,可以表现为触头开距增大、触头表面金属蒸发,伴随场致发射效应和金
属电离,由于两极电子、金属离子的不断补充,终形成电弧。在电弧等离子体的研究方面,王景、武建文等运用连续光谱法分析了电子温度和电子密度,并讨论了中频情况下,电弧过渡及扩散两种形态。胡上茂、姚学玲等利用RC 阻容式电荷收集器,对初始等离子体的触发特性进行了研究。舒胜文、黄道春等通过对真空断路器开断过程的再研究,提出数值方针结合实验的方法,给出开断过程不同阶段所需的数值仿真方法及关注点。赵子玉等通过C
CD 摄像技术,分析了真空电弧的重燃及抑制措施